بترکه چشم حسود    

جستجوی پیشرفته مقالات

     عنوان:

لیست مقالات ترجمه شده

سایر مقالات

امروز
دیروز
هفته جاری
هفته گذشته
ماه جاری
ماه گذشته
بازدید کل
1871
1450
3321
3958192
41037
42453
4227511

آی‌پی شما: 54.81.232.54
امروز: دوشنبه، 31 ارديبهشت 1397 شمسی ساعت به وقت گرینویچ: 20:02:22

توازن توان عملیاتی و زمان پاسخ در ابرهای علمی آنلاین از طریق بهینه سازی کلونی مورچه

لینک دانلود فایل خریداری شده، بلافاصله بعد از پرداخت آنلاین فعال می‌شود.

عنوان محصول:
توازن توان عملیاتی و زمان پاسخ در ابرهای علمی آنلاین از طریق بهینه سازی کلونی مورچه



قیمت: 300000 ریال

  دسته‌بندی: مقالات محاسبات ابری

Balancing throughput and response time in online scientific Clouds via

Ant Colony Optimization

 

Abstract

The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms.

 

 

pdfدانلود رایگان مقاله انگلیسی       806.04 KB

 

چکیده 

الگوی محاسبات ابری روی فراهم سازی زیرساخت های قابل اطمینان و مقیاس پذیر (ابرها) با تحویل سرویس های اجرا و ذخیره سازی تمرکز دارد. الگو، بهمراه وعده ی منابع نامحدود مجازی اش، به نظر می رسد که در حل مسائل محاسبات علمی حریصانه منبع خوب عمل کند. هدف این تحقیق، مطالعه ابرهای خصوصی برای اجرای آزمایش های علمی چندین کاربر است، یعنی تحقیق ما روی مدل زیرساخت بعنوان سرویس (IaaS) تاکید دارد، جاییکه ماشین های مجازی سفارشی (VM) در هاست های مناسب دردسترس در ابر راه اندازی می شوند. بنابراین، زمانبندی صحیح هاست های ابر از اهمیت زیادی برخوردار است و توسعه ی استراتژی های زمانبندی کارا جهت تخصیص مناسب VM ها به منابع فیزکی ضروری است. با اینحال، مسئله زمانبندی کار یک مسئله NP-complete است و بنابراین هیوریستیک های زیادی توسعه یافته اند. در این تحقیق، به توصیف و ارزیابی زمانبند ابر مبتنی بر بهینه سازی کلونی مورچه (ACO) می پردازیم. معیارهای کارایی اصلی برای مطالعه شامل تعداد کاربران سرویس داده شده توسط ابر و کل تعداد VM های ایجاد شده در سناریوی زمانبندی آنلاین هستند. همچنین، تعداد پیام های شبکه میان ابر ارسال شده مورد ارزیابی قرار می گیرند. آزمایش های شبیه سازی شده با استفاده از CloudSim انجام گرفتند و داده های کار مسائل علمی واقعی نشان می دهند که زمانبند ما در توازن معیارهای مطالعه شده در مقایسه با زمانبندهای مبتنی بر الگوریتم های ژنتیک و انتساب تصادفی موفق عمل می کند.

 

 تعداد صفحات مقاله انگلیسی:   17  صفحه

 تعداد صفحات فارسی مقاله ترجمه شده :   53  صفحه

 قالب بندی فایل: فایل ورد (Word)

Balancing throughput and response time in online scientific Clouds via

Ant Colony Optimization

اضافه کردن نظر


کد امنیتی
تازه سازی